Rehabilitation and Assistive Robotics Group (REHAssist)

Haptic Interfaces Lab

REHAssist

Robotics Practicals

2024

Lab Worksheet

Haptic Interfaces

Assistants:

Zeynep Ozge Orhan

Page 10f 19

m
"

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

1. Lab Description

1.1, Aim

Haptics is the science and technology of transmitting and understanding information to a human user
through the sense of touch®. This lab is closely linked to research projects in haptics and medical robotics
carried out at the Rehabilitation and Assistive Robotics Group. It will give you a brief overview of the state
of the art of haptic devices, some of the challenges which have to be addressed to generate useful
sensations, the type of sensations that can be produced, as well as how they can be programmed. We will
look at hardware components that make up a haptic device, discuss the importance and influence of each
component and investigate typical control schemes for haptic applications.

At the end of this lab, you will have a basic understanding of the hardware and software components that
makes up a haptic device, as well as of the particular features of this type of robotic device relative to
more traditional robots currently used in manufacturing.

1.2. Structure

In this practical, you will get familiar with a 2-DOF haptic interface (the Pantograph device). You will not
only deal with the mechatronic components of the device, but also derive equations and program the
device to render simple virtual environments.

Practical Session (4 hours):
® [ntroduction to haptics and force feedback
— Basics, advantages, application areas
= |nvestigating mechatronic components of a haptic device
— Mechanism, structure, actuators, sensors and control hardware
= Setting up the Pantograph device
— Becoming familiar with the development environment and the programming workflow
= Kinematic analysis of the Pantograph

= Rendering a simple virtual environment (elastic behavior)

1 https://www.ultraleap.com/company/news/blog/what-is-haptics/
Page 2 of 19

REHAssist =PrL

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

2. Introduction

2.1. Haptics and Haptic Interfaces

Haptics is all about the sense of touch and force. It enables us to dynamically interact with the physical
world, to manipulate objects, feel the textures of a surface, the shape of an object etc. To better
understand the interaction of a human user with a haptic device, let us first take a look at the physiology
of haptic sensing. Imagine a sponge on a table in front of you. Using your arm and hand, you can first
touch the table and then the sponge. The table will feel hard, and the sponge soft. The forces exerted
against your finger (e.g. contact force, compliance and weight of an object, resistance) give you
information about the rigidity of the touched or manipulated object. This is called kinesthetic or force
feedback. But you can also slide your finger over the table and the sponge; feel the edges and the wooden
surface of the table, and the porous surface of the sponge. This is referred to as tactile feedback. In this
lab, however, we will only focus on force feedback (For a complete information, please refer to the
excellent article on haptics written by (Hayward & Maclean, 2007)).

A hapticinterface is an actuated, computer-controlled and instrumented device that allows a human user
to touch and manipulate objects either within a virtual environment (VE) or in a real world through a slave
of a teleoperated system, such as for surgical robotics (Gillespie, 2005). The haptic interface ensures
bilateral interactions between the user and the VE in a haptic rendering process as shown in Figure 1
(Samur, 2010). This dual-way property, in other words being not only an input interface but also a
feedback source for the user, gives a unique characteristic to the haptic device. However, this interaction
imposes additional constraints with respect to other conventional robotic devices:

= A haptic device must be safe enough to interact with a human user;

= Motion and force generated by the haptic interface must be sufficiently smooth, without parasitic
effects (e.g. unwanted vibrations that can distort the intended touch sensation conveyed to the
user)

Virtual — | Haptic 5 |Human
; — P «—
Environment Interface User

Figure 1: Haptic rendering process. Bilateral interactions between a user and a VE are realized through the haptic interface.

Moreover, an ideal haptic interface would be capable of accurately simulating any kind of physical
environment and surface, such that the touch sensations that the user feels will be very similar to those
felt while interacting with a real environment. In terms of kinesthetic feedback, this means being able to
simulate both a free environment (i.e. the user should not feel any resistance force when interacting with
the device) on the one hand, and on the other hand a very rigid environment (for example simulating a

Page 3 of 19

REHAssist =P-L

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

rigid wall that does not move or deform when the user touches it). These are the two opposite ends of
the spectrum in terms of kinesthetic feelings when interacting with objects. Being capable of reproducing
these extremes would mean also being able to simulate anything else in between them such as objects
with different levels of viscoelasticity (you can imagine it as softness/hardness). However, in real haptic
interfaces due to several limitations, these two extremes are hardly achievable. Keep this in mind
throughout this practical, and try to identify the limiting factors that affect the ability to generate each
end of the spectrum.

The above-mentioned constraints and requirements drastically influence the design of the mechanical
structure, the choice of actuators, transmissions and sensors as well as the control scheme.

3. Application Areas

Although haptic interfaces are still mainly used in research, there are already several industrial
applications, some of which are presented in this section.

3.1. Industrial and commercial applications:
= Teleoperation in hazardous environments (e.g. inspection of nuclear power plants)

= Surgery training (e.g., VirtaMed, Surgical Science, Mentice, Simboinix, Mimic, MOOG)
= Medical & Surgical robotics (e.g., ForceDimension, Intiutive Surgical, Hansen Medical)
= Virtual prototyping and 3D CAD (e.g., PHANTOM, Haption)

= Entertainment industry (e.g., Novint Falcon)

= Nano and micro manipulation.

Figure 2: (Left) MIRO surgical robot from DLR controlled by Force Dimension’s omega.7 haptic device (Right)da Vinci surgery
system.

3.2. Research applications:
= Psychophysics / Neuroscience (in particular investigation of motor control and motor learning)
= Rehabilitation of patients
= Scientific visualization
= Virtual museums

= Input/output devices for the visually impaired

Page 4 of 19

REHAssist =Pr

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Figure 3: Haptic interfaces to investigate brain mechanisms involved in human motor control. (Courtesy of Rehabilitation
Engineering Lab at ETHZ)

4. Hardware

A haptic interface is made of mainly the same components as an industrial robot for assembly or
machining tasks: actuators, transmissions and sensors, attached to a task-specific mechanical structure.
Similar to a typical robot, haptic interfaces usually have an end-effector, which can be for example a
handle that the user will grasp and interact with. However, the main difference between a hapticinterface
and an industrial robot is the strong emphasis on dynamic physical interaction with the human users and
the need to provide touch feedback to them in haptic interfaces.

Figure 4 sketches a sample haptic interface (the Pantograph device), which you will use for this practical.
This 2 degree-of-freedom (DOF) interface could, for example, reflect the interaction with a virtual object
in 2D space. The haptic device shown in this figure consists of actuators and sensors (for example encoders
for sensing the position of the output), a kinematic linkage, a control unit including controller and motor
driver, and a PC user interface that can be used for reading information from the device, tuning
parameters on it, and displaying a virtual environment to the user.

Controller + PC
Haptlc Device Motor Driver (Programming + Monitoring)

Interaction port

Figure 4: Components of a haptic interface

Let us assume that the actuator is a backdrivable DC motor (i.e. if the motor is turned off or inactive, the

output shaft can still be moved manually without too much effort against friction and inertia). In haptic

devices, the actuators are often used in torque control mode (i.e. the current running through the motor

coils is controlled, which is proportional to the output torque of the motor by a factor K1 — the torque

constant of the motor). A transmission (such as a gearbox) can also be used to increase the output torque
Page 5 of 19

REHAssist =PrL

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

of the actuator. But using a transmission (particularly if it has a high input:output ratio) often reduces
backdrivability due to added friction and inertia, and also amplifying the friction and inertia of the
actuator.

5. Control

The task of most industrial robots is to position a tool or component in space, and move it along a desired
trajectory. These robots usually use a position control scheme. The loop is closed over position sensors
located throughout the robot. A haptic interface, however, will interact with a human subject, who will
impose the position of the output by her/his movement. The purpose is to generate the same sensations
as if the human was interacting with a certain physical environment. Therefore, the haptic interface must
control the reaction forces at the output, rather than the device endpoint trajectory. This is ideally
achieved with control schemes based on force-feedback, but for simpler implementations it is also
possible to use open-loop force/torque control.

In order to produce transparent haptic rendering, a multi-purpose haptic device must be able to simulate
free movement, i.e. give the user the impression that they are moving their hand freely, without any
device attached to it. Once this so-called “transparency” is achieved, arbitrary forces can be superposed
on the free movement.

One of the most frequently implemented control strategy for haptic interfaces is impedance control. The
dynamic relationship between the input movement and the output force/torque is referred to as
“mechanical impedance”. As a simple example, consider a mechanical spring; you can compress or stretch
the spring (i.e. impose a movement on it), and as a result, you will get a force as a function of the amount
of deformation. Therefore, in impedance control mode, the haptic device will generate forces in reaction
to a displacement generated by the human operator.

Different objects have different mechanical properties that affect the kinesthetic feedback that we get
when touching them. These mechanical properties can be mathematically described in terms of their
mechanical impedance. The basic elements of mechanical impedance are elasticity (i.e. spring-like
behavior that relates force to displacement), viscosity (i.e. fluid-like behavior that relates force to speed),
and inertia (i.e. resistance to changes in speed that relates force to acceleration). Using a combination of
these 3 elements, various objects can be modelled. Thus, impedance control will allow simulating different
objects with the haptic interface.

The impedance control scheme theoretically requires force/torque sensors at the output to measure the
interaction forces with the operator in order to control them in closed-loop, but can practically be realized
without such sensors if the actuators and transmissions are backdrivable and have low friction, and the
mechanical structure has low inertia (For more information on impedance control, refer to (Hogan &
Buerger, 2005)).

Like almost all modern robotic devices, haptic interfaces are computer-controlled, which means that they
rely on discrete-time digital controllers. Haptic control loop must run at a minimum of 1 kHz, to be able
to compensate for vibrations up to the sensible frequency of 400 Hz. Also, keep in mind that we are trying
to simulate continuous-time behavior (i.e. the behavior of real physical objects) with a discrete-time
system; this is an approximation. The lower the frequency of the haptic control loop, the less accurate this
approximation becomes. The errors resulting from this and several other approximations can result in

Page 6 of 19

M

REHAssist P-L

REHAssist

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

unstable behavior of the haptic interface (for instance, unwanted vibrations with an increasing
amplitude). Stability issues are often the main challenge in simulating rigid environments (Desai et al.,
2019).

Another point that can be considered in the case of a haptic interface is the visual feedback. As the user
interacts with a virtual environment, visual information is usually presented together with the haptic
feedback (various applications additionally present acoustic feedback to enrich the user experience and
make it more realistic). The visual feedback must be presented at an update rate of at least 15 Hz for the
user to perceive “smooth” animation.

T e —
20(Hz \
AR Environement % £, / \
' +—| Seene Update ,| ———p | Fores Feedback Loop :|
&nlliso" Dietection \ /
e ____.-" — -
1 kHz
Visual Position /'/ Force
Feedback

Communication Layer

Host Computer 1 |
Measurements
Actuation Orders l j“%
Haptic Feedback /
N Haptic Interface

User Actuation

Figure 5: Schematic representation of the visual and haptic control loops of a virtual reality station.

Figure 5 schematically represents the visual and haptic feedback loops present in the Xitact IHP. The
interaction forces between the haptic interface and the virtual world are calculated and updated on the
haptic interface at about 1 kHz. This, together with the collision detection, requires an important amount
of processing power, which surpasses that of many industrial robots. The visual feedback is generated at
20 Hz. The computer screen shows the interaction of the virtual tool with the virtual environment
(Vollenweider, 2000) (Moix, 2005).

6. Bibliography

Desai, |., Gupta, A., & Chakraborty, D. (2019). Effect of Human Hand Dynamics on Haptic Rendering of Stiff
Springs using Virtual Mass Feedback. 2019 28th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), 1-6. https://doi.org/10.1109/RO-MAN46459.2019.8956422

Gillespie, R. B. (2005). Haptic interface to virtual environments. In Robotics and Automation Handbook.
Tom Kurfess (ed.). CRC Press.

Page 7 of 19

m
v
"

https://doi.org/10.1109/RO-MAN46459.2019.8956422

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Hayward, V., & Maclean, K. (2007). Do it yourself haptics: part i. IEEE Robotics & Automation Magazine,
14(4):88-104.

Hogan, N., & Buerger, S. (2005). Impedance and Interaction Control. In Robotics and Automation
Handbook. Tom Kurfess (ed.). CRC Press.

Moix, T. (2005). Mechatronic Elements and Haptic Rendering for Computer Assisted Minimally Invasive
Surgery Training. Lausanne: EPFL PhD thesis No 3306.

Samur, E. (2010). Systematic Evaluation Methodology and Performance Metrics for Haptic Interfaces.
EPFL PhD Thesis No 4648.

Vollenweider, M. (2000). High Quality Virtual Reality Systems with Haptic Feedback. Lausanne: EPFL PhD
thesis No 2251.

Page 8 of 19

REHAssist =PrL

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

7. Practical Session

7.1. Hardware overview

The final purpose in this practical session is to implement some simple virtual environments using the
haptic device shown in Figure 6. The main part of the device itself consists of 2 brushless DC (BLDC)
motors, connected directly (i.e. without any gearbox or transmission) to a pantograph linkage that
converts the rotational movement of the motors to the translational movement of the end point in the
2D plane. In robotics literature, the rotational movement space of the motors is typically referred to as
the “joint space”, and the translational movement space of the end point (also known as the end-effector)
is referred to as the “task space”.

Motor phases and
hall effect sensor
terminal

Power
Encoder SuPply

terminal

& USB/UART
Module

Figure 6: The pantograph haptic device and its peripherals.

The motors are driven by a controller board, which is responsible for (i) doing the calculations to render
the virtual environment and (ii) driving to motors according to those calculations?. The board is powered
by a DC power supply. In order to enable the board to drive the motors, the winding phases of the motors
and the Hall sensor outputs are connected to the green screw terminal on the board. The (incremental)

2 In many robotic devices, these 2 tasks are typically carried out by 2 separate units: an embedded computer
(which only takes care of the calculations related to the virtual environment and the robot kinematics/dynamics, to
generate the force/torque commands), and a motor driver (which takes care of providing the required voltage and
current to the motors to follow the force/torque commands generated by the controller).

Page 9 of 19

m

REHAssist P-L

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

shaft encoders of the motors are also connected to the black “box connectors” on the board using flat
cables, providing a more accurate information about the position of the motor shafts. You can read more
about brushless DC motors and incremental encoders in Annex |. Note that in order to protect the motors,
the board will limit the torque of the motors to their rated (nominal) torque. Even if you command a
higher torque value, this limit on the torques will be enforced by the controller board. Try to find out the
nominal torque of the motors of the pantograph by looking up their part number on the internet and
finding their datasheet.

All of the computations on the board are carried out by a microcontroller. You will upload your program
(written in the C programming language) to render the virtual environment on this microcontroller, using
a programmer (ST-link V2). This programmer is only active for a few seconds when you upload (or “flash”)
your code to the board, and is idle the rest of the time3. After uploading your code to the microcontroller,
you can communicate with it from the computer to read the variables and also set controller parameters
if needed. This communication is done via the UART protocol, using the USB/UART converter that allows
the computer to transfer data with the device over a normal USB port.

Important precaution for working with the device:

The controller board is exposed, and this board is sensitive to electrostatic discharge. Therefore, avoid
touching the board as much as possible, and if you have to touch the board (for pushing the reset button
for example), touch the blue metal part of the pantograph first to discharge any possible static charge in
your body.

REHAssist

3 However, it is better to keep it connected to the computer because you may need to flash your code several
times. When the programmer is connected to the board, it should also be kept connected to the computer
because otherwise it will block the microcontroller from running.

Page 10 of 19

M
1
"N

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

7.2. Theoretical Derivations

Exercise 1. Deriving the kinematic equations

Figure 7: Simplified geometric representation of the Pantograph kinematic chain.

A) Derive, by hand, the forward kinematic equations for the endpoint of the pantograph, relating
the joint space positions to task space (i.e., endpoint position as a function of motor angles). In
other words, write the equation describing P(x,y) in the Cartesian plane in terms of angles ¢4 and
@g as shown in Figure 7 with the lengths a, b and ¢ as fixed parameters. Pay attention to the
positive direction of the X and Y axes, the positive direction of the angles, and the zero point of
the angles. Keep your equations consistent with Figure 7. Also note that the origin of the
coordinate frame O is located on the midpoint of the line connecting motors A and B (so we have
A(0,+¢/5) and B(0,—€/,) for example).

Hint: You can use the auxiliary point Py (midpoint of the line connecting P; and P;) and geometric
relationships to simplify the derivation. This is not the only possible method, though.

B) Implement these equations in a MATLAB script and roughly verify that the results make sense
using some intuitive values for the motor angles. You can use the numerical values a =
102 [mm],b = 111 [m] and ¢ = 60 [mm] for the lengths to do the numerical verification.

C) After checking your equations, convert them to symbolic form* such that you have the X and Y
components of the endpoint position P, as a function of symbolic variables named phi A,
phi B, LENGTH A, LENGTH Band LENGTH C.You can then generate the equations to be

4 For this step you need to have the Symbolic Math Toolbox of MATLAB installed on your computer. For a very
short review of this toolbox and its most used commands, refer to this webpage.
Page 11 of 19

REHAssist =P-L

http://www.cfm.brown.edu/people/dobrush/am33/Matlab/intro/symbolic.html

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

implemented on the microcontroller (expressed in C programming syntax rather than MATLAB)
using the ccode () function of MATLAB.

Exercise 2. Deriving the force/torque equations

A) Derive, by hand, the equations between F(Fx, Fy), the force vector applied to the end point of
the device, and the motor torques 7,4 and 75 (i.e. the equations relating task-space forces to joint-
space torques). Write the motor torques as a function of the end point force components with
the motor angles as variables (thatis, 74 = f(Fy, Fy, @4, @) and 15 = g(Fy, E,, 94, ¢5)). Use the
lengths a, b and ¢ as fixed parameters. Pay attention to the positive direction of the force
components and the torques as shown in Figure 7 (positive direction of the torques is the same
as the positive direction for the angles).
Hint: Jacobian matrix provides the relation between joint velocities and end-effector velocities of
a manipulator. By using the derived kinematics in the Exercise 1., compute the jacobian matrix.
Later, by using T = JTF relation, map the cartesian forces to equivalent joint torques.

B) Implement the equations in your MATLAB script and similar to before, roughly verify them by
inputting some representative numerical values for the joint angles and force vector components.

C) After checking your equations, you can convert them to the symbolic form such that you have the
torques of the motors A and B as a function of symbolic variables named phi A, phi B,
LENGTH A, LENGTH B,LENGTH C, F x and F_y.You can then generate the equations
to be implemented on the microcontroller directly using the ccode () function of MATLAB.

7.3. Flashing the base code and pantograph initialization

As a first step to begin working with the device and becoming familiar with it, you can flash the base code
to the controller and check the reading of the encoder angles. Follow these steps for flashing the code:

1. Plug your power supply into the electric outlet and verify that your device is powered on by
checking the LED on the board.

2. Open the microcontroller code project in the System Workbench software, and compile the code
by clicking on the black downward arrow next to the “build” icon (see Figure 8) and making sure
Release is selected (you only need to do this once, next time you can just click on the build icon).

= workspace - C/C++ - WalkiMotorBoard_V2/src/motork
File Edit 5ource Refactor MNavigate Search Proj

i H-RADE N Qi @~ &
I’y Project Explorer =3 1 Debug |
2 Release

v =5 WalkiMotorBoar =
1] -

Figure 8 - Selecting "release" mode for the first-time compilation of the microcontroller code.

3. Connect the USB cable of the programmer to your computer. The red LED on the programmer will
turn on if it is properly connected. If this LED is off or blinking, it means there is a problem is your
connection to the computer, check with the assistants.

4. After the build process is finished successfully, you can flash the program to the microcontroller
by clicking on the black downward arrow next to the “run” icon, then Run As > 1 Ac6 STM32... (see
Figure 9). Verify that the flashing process is finished successfully by looking in the Console tab on

Page 12 of 19

REHAssist =PrL

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

the bottom of the System Workbench window, there should be a line saying “Verified OK” near

the end.
delp
'GOQE'%'@[S \:,"v - - - -
o & 1WalkiMotorBoard_V2 Run |
Run As * Lo 1Ac6STM32 C/C++ Application
Run Configurations... [©] 2Llocal C/C++ Application
Crganize Favorites... & 35TsS5TM32 MPU C/C++ Application
[
a3 B s L R E e PR - PR | L s e (=1

Figure 9 - Flashing the code on the microcontroller for the first time.

Now you can use the GUI application on the computer to communicate with the board and read the
encoder angles. The encoders of the device are incremental, which means that they can only give the
relative amount of rotation of the motor compared to the initial position at which you power on the
device. But for our calculations, we need the absolute angles as defined before (refer to Figure 7).
Therefore, before being able to start working with the device, you need to initialize the encoders. Follow
these steps to communicate with the device via the GUI and initialize the encoders:

1. Make sure that the USB/UART module is connected to the computer’s USB port. Open the
PantographGUI project in Qt Creator and run it by clicking on the green “run” button on the
bottom left corner of the screen (see Figure 10).

Pant._hGUT

=,

Release

>
P

[0l O Typetol

Figure 10 - Running the GUI program in Qt Creator.

2. Onthe first window that appears, from the “Serial port” drop down menu, choose USB Serial Port
and then click on OK. The GUI window will appear (Figure 11).

3. If the numbers for the board input voltage and current are not being displayed, use the red reset
button next to the encoder connector of motor A on the controller board (see Figure 12).
Resetting the board is required each time you flash a new program to the microcontroller.

4. You can also monitor the messages sent from the microcontroller in the Application Output tab
in Qt Creator. After resetting the board, you can check the messages received from the controller
to verify the communication as well.

5. Try moving the links directly connected to each motor and see the angle value changing in the
GUI window. In order to initialize the angles to the correct absolute values, move the link directly
connected to each motor to the 90" angle (you can use the black cross marks on the base as a

Page 13 of 19

PFL

m

REHAssist

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

guide) and then enter 90 in the “Motor A/B Angle” field and click on the Set button. Verify that
the angle for the corresponding motor has changed to 90. You need to do this separately for each
motor. Also, each time you power off, reset, or reprogram the board, this procedure needs to be

repeated.
B | Robotics Practicals - Haptic Interfaces GUI — O X
Board input voltage: 24.5825 V Board input current 0.326299 A
Arm H-bridges Disarm H-bridges / emergency stop Soft reset board
| Motor A Angl: Set Motor BAngleil00 3] set
Parameters Live plot/tuning
! Status
| Motor A position: 0.0 [deg] Motor B position: 0.0 [deg]
Endpoint X: 106.9 [mm] Endpoint Y: -101.9 [mm)]
|
Motor A Torque Command: 0.0 [mN.m] Motor B Torque Command: 0.0 [mN.m]
Motor A current: -0.0[A] Motor B current: 0.0[A]

Parameter Settings

exi oo g0 s | evm
K x [N/mm] 0.000 Set K_y [N/mm]|0.000 = Set
et) S| nttom

Figure 11 - The GUI window of the PC interface software.

S

099"

ﬁesetB OEEBQDQPU'Q

sgs‘;ﬂ:
80 995

042D

Figure 12 - Reset button on the controller board.

Page 14 of 19

REHAssist =Pr

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

7.4. Becoming familiar with the microcontroller code

Go back to the microcontroller code in System Workbench. On the left side of the screen in the Project
Explorer pane, find the filemotorboard main.cinthe src folder. This file is the part of the code you
will be writing your program in. Around the top of this file, find the lines where the constants and variables
for the pantograph are defined and initialized (indicated clearly by comments in the code). You will be
using these parameters and variables in your controller. Also pay attention to the units of these
parameters and variables, indicated in the comments. Then scroll down to the function
StepMainLoop () which is where you need to insert your controller code. This function will be called at
1 KHz (that is, every 1 millisecond). You can see some sections are marked with a comment saying “YOUR
CODE HERE”.

7.5. Implementing the haptic controller

Exercise 3. Implementing and testing the kinematics

Insert your code for calculating the X and Y coordinates of the endpoint position under the section marked
with the comment Forward kinematics. Use the motor angles phi A and phi B defined just
above, and the necessary parameters and variables defined on the top section of the file. Update the
values of the endPointXPosition and endPointYPosition variables with your calculated
values. You can use the C code generated by your MATLAB script from Exercise 1 here.

After entering your code and checking that it compiles without any errors, you can flash the program to
the controller board. Then, connect to the board with the GUI program and initialize the encoders to the
correct angles as described in the previous section. Now try moving the end point around and see the
values for the “Endpoint X/Y” being updated in the GUI.

In order to verify your kinematics, place the end point over each of the cross marks on the base. These
points are located at (+90, +30)[mm] and your calculated end point position must approximately agree
with these values.

Exercise 4. Implementing and testing the force-torque conversion

Insert your code for calculating the torques of the two motors based on the force vector applied to the
end point under the section marked with the comment Generate torque commands from end
point force. Use the force components F_x and F_y in your expressions, and update the values of
the motorATorqueCommand and motorBTorqueCommand variables. You can use the C code
generated by your MATLAB script from Exercise 2 here. Compile and flash your code to the board, and
initialize the encoders.

A) As afirst test, set F_x to 1 [N] and F_y to O [N] and check the “Motor A/B Torque Command”
values in the GUI as you move the endpoint around. Do these generated commands make sense?
Explain how you checked the behavior to verify intuitively that this is correct. Check your results
with the assistants before proceeding.

B) Click on the “Arm H-Bridges” button in the GUI to activate the H-bridges on the board and start
driving the motors. After a brief delay, the motors will start applying the commanded torques.
Feel the direction of the force being applied at the end point, does it correspond to the force you
programmed?

C) Gradually increase the value of F_x, while keeping an eye on the commanded torques to the
motors.

Page 15 of 19

REHAssist =PrL

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

the full workspace? Which factors (in the design and component selection of the device)
determine this upper limit? Would you suggest using a gearbox to increase this force? Why or
why not?

Exercise 5. Rendering virtual springsin X and Y

As explained in Section 0, the mechanical properties of real objects that are relevant for kinesthetic
feedback can be described in terms of elasticity, viscosity, and inertia. To keep things simple, in this lab
we will focus on only simulating elasticity.

Write the code to simulate an elastic virtual environment at the end point of the pantograph, consisting
of two separate linear springs acting in the X and Y directions respectively. Use the variables named X_ref
and Y_ref as the resting position of the springs. Also, use the spring constants K x and K_y inyour
equations, and save the calculated forces to F_x and F_y. Compile and flash the code to the board. Do
not forget to initialize the encoders before continuing.

A) As a first test, set some sensible values for the spring stiffnesses and resting positions. Then,
without activating the motors, move the end point around and check the generated torque
commands. Do they intuitively make sense? Check your results with the assistants before going
to the next step.

B) Trysimulating a spring only in one direction at a time (e.g. only x-axis or only y-axis), with a proper
stiffness value. Arm the H-bridges and test the behavior. Does it replicate the behavior of a real
spring?

C) Set the spring stiffness in one of the directions to a very low value, e.g. 0.001 [N/mm], and the
other to 0. Does this behavior correspond to that of an ideal spring? If not, please explain how
it is different and what is causing the difference.

D) Setboth of your spring constants to 0.01 [N/mm], then gradually increase the stiffness only in one
direction, by increments of 0.01. Do you observe a fundamental change in the behavior of the
virtual spring for small deformations as you increase the stiffness (other than feeling stiffer)? Hint:
to investigate this, set the current position of the end-effector of the pantograph to be the
equilibrium point of the spring, and then gradually increase the stiffness.

E) Based on your observations in the previous part, what is the highest stiffness that you can set and
still have realistic behavior for small deformations? Which issue keeps you from increasing the

stiffness beyond this value? What could be causing this issue? (Hint: refer to the discussion about
instability in section 5 and the cited reference.)

F) Discuss your conclusions about the limitations of this device in rendering virtual springs.
According to your observations, which characteristics determine the lower limit, and which
ones influence the upper limit of the impedances (which was only a stiffness in this lab) that a
haptic device can render realistically?

Page 16 of 19

REHAssist =Pr

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

ANNEX |

Actuators and Sensors

Brushless DC motors
Two brushless DC motors (BLDC) are used for our haptic interface. Before looking at the working principle
of a brushless motor, let’s see how the “brushed motors” are working.

The “brushed motors” derive their name from having brushes within the internal structure. In a brushed
motor a stator with magnets surrounds a turning rotor. When connected to a current source, opposite
polarities create a magnetic field torque. Because of this, the rotor starts turning around its axis. In other
words, the rotor turns under the influence of the magnetic field such that its north pole will move toward
the south pole of the stator (Figure 13, right). Brushes are used to switch the polarity of the rotor magnet
as the rotor rotates, so that the opposite poles on the rotor and stator are always close to each other (and
therefore creating torque). This constant switching of the polarity is called “commutation”. You can refer
to this video for a very easy to understand explanation.

The “brushless motor” is so named since the magnetic field is provided by rotating magnets while the
armature is stationary, thus eliminating the need for brush commutation. The flow of the electric current
between the rotor and the stationary part of the machine is switched externally. As the rotor keeps
turning, the commutator reverses the direction of the electric current (and thus the magnetic field) to
create a one-way torque to keep the motor turning.

found in a typical brushed : J) from the battery to the
H1/

N Compiiter, Brushless ——— .. Brushed
This replaces the commutator Motor "f/ﬁ &\\ Fonduclelecmcﬂy Motor
motor assembly. 2 \ | 1 ““"" / commutator.

\\c\. /// | Commutator]

: Acts as an electri
These are stationary. Power S ¢1s as an eleclric

is delivered directly without switch, changing the
any brushes. electromagnat polarity.

Electromagnets

Attached to the |

spinning shaft Fixed Magnets
Surrounds the electromagnet
which creates the magnetic

field for the electromagnet
to push & pull against

B Magneis

Spin without resistance -
inside the electromagnet

www.ch jjournal.com/what-is-a-brushless-motor-and-how-does-it-work/

Figure 13 — Working principles of brushless and brushed motors

The difference between a brushed motor and a brushless motor is thus in how the commutation is done.
In brushed motors, the commutation is done mechanically in the motor. In a brushless motor, the
commutation needs to be done by an external electrical circuit, and thus we need sensing. A Hall-effect
sensor which is a solid-state, magnetic field sensor is used to sense the rotation angle and thus control
the current supply to the stator such that the magnetic field is in the right direction. In other words, the

Page 17 of 19

REHAssist =Pr

https://www.youtube.com/watch?v=CWulQ1ZSE3c

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

REHAssist

Hall-effect sensor can be used to measure the rotation speed, and the angle of the rotor, and then decide
when the current should be applied to the motor coils to make the magnets rotate at the right orientation.

The Hall-effect sensor employs the principle that when a conductor with current flowing through it is
placed in a magnetic field, the magnetic field induces a transverse force on the charge carriers. This force
pushes them to the sides of the conductor—negative to one side and positive to the other side. This
creates charge on the sides of the conductor induces a voltage.

Permanant magnat rator

Winding
(This type of winding is
called distributed winding)

Stator

Hall element for
detecting rotor
rotational position.

Passas curmant to
each coll.

—~:§k&?‘%\§\
\\Q§y Rolor position
i

: datection circuit

Figure 14 — Structural components of BLDC motor

Compared to other types of motors (DC brushed, stepper motors...), these ones have many advantages
such as higher efficiency, high torque to weight ratio, compact size, increased reliability, low vibration and
reduced noise. Thanks to these advantages, BLDC motors are often used in modern devices where low
noise and low heat are required especially if devices run continuously. These primary distinctions are
relevant to haptic interface design.

Encoders

To accurately determine the motor’s shaft angle at any point in time, 2 position sensors are attached to
one end of each motor. For such position sensors, several technologies exist such as magnetic sensing
(using Hall Effect sensors) or optical encoders like the ones we are using.

J/“’_ -
Detector Emitter

Page 18 of 19

m
v
"

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Figure 15. Optical encoder working principle

In an optical encoder, a focused beam of light is aimed at a paired photo detector and is interrupted by a
coded patterned disk. Thus, the system will produce a number of pulses per revolution, linearly with the
motor’s shaft angle. Two types of optical encoders exist: absolute and differential encoders. For the first
type, the absolute angle of the shaft is known by just reading the light pattern while differential
encoders only allow incremental / decremental readings.

Incremental Encoder
PHOTO SENSOR
DX
\ Dy
Jon G e S \

R SOUNNG
g &y, ORCuT
d

D/
Wikipedia.crg

Absolute Encoder

)

W
>
7

o B
dha.

=y 5
o
y!
st

o~

Absolute Encoder Disk -
Wikipedia.org sabakntu.ac.ir

T

‘:f-

Figure 16: Different types of optical encoders

To know in which direction the shaft will turn, optical systems actually use two LEDs (2 channels) slightly
misaligned in order to generate different signals depending on the rotation:

| __I Slale Cha Ch i
[

_____ ; 51 High Low

A _.“_:__:_U u L 57 High Hign
| ' | |\ i] High

|
i a5 Low Low
4

To properly convert the photo detectors output to a pure square signal such as--+ the one shown in the
above diagram, differential line receivers can be used, where Schmitt triggers are incorporated.

Page 19 of 19

REHAssist

m
v
"

