
Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 1 of 19

Robotics Practicals

2024

Lab Worksheet

Haptic Interfaces

Assistants:

Zeynep Özge Orhan

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 2 of 19

1. Lab Description

1.1. Aim
Haptics is the science and technology of transmitting and understanding information to a human user
through the sense of touch1. This lab is closely linked to research projects in haptics and medical robotics
carried out at the Rehabilitation and Assistive Robotics Group. It will give you a brief overview of the state
of the art of haptic devices, some of the challenges which have to be addressed to generate useful
sensations, the type of sensations that can be produced, as well as how they can be programmed. We will
look at hardware components that make up a haptic device, discuss the importance and influence of each
component and investigate typical control schemes for haptic applications.

At the end of this lab, you will have a basic understanding of the hardware and software components that
makes up a haptic device, as well as of the particular features of this type of robotic device relative to
more traditional robots currently used in manufacturing.

1.2. Structure
In this practical, you will get familiar with a 2-DOF haptic interface (the Pantograph device). You will not
only deal with the mechatronic components of the device, but also derive equations and program the
device to render simple virtual environments.

Practical Session (4 hours):

▪ Introduction to haptics and force feedback

– Basics, advantages, application areas

▪ Investigating mechatronic components of a haptic device

– Mechanism, structure, actuators, sensors and control hardware

▪ Setting up the Pantograph device

– Becoming familiar with the development environment and the programming workflow

▪ Kinematic analysis of the Pantograph

▪ Rendering a simple virtual environment (elastic behavior)

1 https://www.ultraleap.com/company/news/blog/what-is-haptics/

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 3 of 19

2. Introduction

2.1. Haptics and Haptic Interfaces
Haptics is all about the sense of touch and force. It enables us to dynamically interact with the physical
world, to manipulate objects, feel the textures of a surface, the shape of an object etc. To better
understand the interaction of a human user with a haptic device, let us first take a look at the physiology
of haptic sensing. Imagine a sponge on a table in front of you. Using your arm and hand, you can first
touch the table and then the sponge. The table will feel hard, and the sponge soft. The forces exerted
against your finger (e.g. contact force, compliance and weight of an object, resistance) give you
information about the rigidity of the touched or manipulated object. This is called kinesthetic or force
feedback. But you can also slide your finger over the table and the sponge; feel the edges and the wooden
surface of the table, and the porous surface of the sponge. This is referred to as tactile feedback. In this
lab, however, we will only focus on force feedback (For a complete information, please refer to the
excellent article on haptics written by (Hayward & Maclean, 2007)).
A haptic interface is an actuated, computer-controlled and instrumented device that allows a human user
to touch and manipulate objects either within a virtual environment (VE) or in a real world through a slave
of a teleoperated system, such as for surgical robotics (Gillespie, 2005). The haptic interface ensures
bilateral interactions between the user and the VE in a haptic rendering process as shown in Figure 1

(Samur, 2010). This dual-way property, in other words being not only an input interface but also a
feedback source for the user, gives a unique characteristic to the haptic device. However, this interaction
imposes additional constraints with respect to other conventional robotic devices:

▪ A haptic device must be safe enough to interact with a human user;

▪ Motion and force generated by the haptic interface must be sufficiently smooth, without parasitic
effects (e.g. unwanted vibrations that can distort the intended touch sensation conveyed to the
user)

Figure 1: Haptic rendering process. Bilateral interactions between a user and a VE are realized through the haptic interface.

Moreover, an ideal haptic interface would be capable of accurately simulating any kind of physical
environment and surface, such that the touch sensations that the user feels will be very similar to those
felt while interacting with a real environment. In terms of kinesthetic feedback, this means being able to
simulate both a free environment (i.e. the user should not feel any resistance force when interacting with
the device) on the one hand, and on the other hand a very rigid environment (for example simulating a

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 4 of 19

rigid wall that does not move or deform when the user touches it). These are the two opposite ends of
the spectrum in terms of kinesthetic feelings when interacting with objects. Being capable of reproducing
these extremes would mean also being able to simulate anything else in between them such as objects
with different levels of viscoelasticity (you can imagine it as softness/hardness). However, in real haptic
interfaces due to several limitations, these two extremes are hardly achievable. Keep this in mind
throughout this practical, and try to identify the limiting factors that affect the ability to generate each
end of the spectrum.
The above-mentioned constraints and requirements drastically influence the design of the mechanical
structure, the choice of actuators, transmissions and sensors as well as the control scheme.

3. Application Areas
Although haptic interfaces are still mainly used in research, there are already several industrial
applications, some of which are presented in this section.

3.1. Industrial and commercial applications:
▪ Teleoperation in hazardous environments (e.g. inspection of nuclear power plants)

▪ Surgery training (e.g., VirtaMed, Surgical Science, Mentice, Simboinix, Mimic, MOOG)

▪ Medical & Surgical robotics (e.g., ForceDimension, Intiutive Surgical, Hansen Medical)

▪ Virtual prototyping and 3D CAD (e.g., PHANTOM, Haption)

▪ Entertainment industry (e.g., Novint Falcon)

▪ Nano and micro manipulation.

Figure 2: (Left) MIRO surgical robot from DLR controlled by Force Dimension’s omega.7 haptic device (Right)da Vinci surgery
system.

3.2. Research applications:
▪ Psychophysics / Neuroscience (in particular investigation of motor control and motor learning)

▪ Rehabilitation of patients

▪ Scientific visualization

▪ Virtual museums

▪ Input/output devices for the visually impaired

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 5 of 19

Figure 3: Haptic interfaces to investigate brain mechanisms involved in human motor control. (Courtesy of Rehabilitation
Engineering Lab at ETHZ)

4. Hardware
A haptic interface is made of mainly the same components as an industrial robot for assembly or

machining tasks: actuators, transmissions and sensors, attached to a task-specific mechanical structure.

Similar to a typical robot, haptic interfaces usually have an end-effector, which can be for example a

handle that the user will grasp and interact with. However, the main difference between a haptic interface

and an industrial robot is the strong emphasis on dynamic physical interaction with the human users and

the need to provide touch feedback to them in haptic interfaces.

Figure 4 sketches a sample haptic interface (the Pantograph device), which you will use for this practical.

This 2 degree-of-freedom (DOF) interface could, for example, reflect the interaction with a virtual object

in 2D space. The haptic device shown in this figure consists of actuators and sensors (for example encoders

for sensing the position of the output), a kinematic linkage, a control unit including controller and motor

driver, and a PC user interface that can be used for reading information from the device, tuning

parameters on it, and displaying a virtual environment to the user.

Figure 4: Components of a haptic interface

Let us assume that the actuator is a backdrivable DC motor (i.e. if the motor is turned off or inactive, the

output shaft can still be moved manually without too much effort against friction and inertia). In haptic

devices, the actuators are often used in torque control mode (i.e. the current running through the motor

coils is controlled, which is proportional to the output torque of the motor by a factor KT – the torque

constant of the motor). A transmission (such as a gearbox) can also be used to increase the output torque

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 6 of 19

of the actuator. But using a transmission (particularly if it has a high input:output ratio) often reduces

backdrivability due to added friction and inertia, and also amplifying the friction and inertia of the

actuator.

5. Control
The task of most industrial robots is to position a tool or component in space, and move it along a desired

trajectory. These robots usually use a position control scheme. The loop is closed over position sensors

located throughout the robot. A haptic interface, however, will interact with a human subject, who will

impose the position of the output by her/his movement. The purpose is to generate the same sensations

as if the human was interacting with a certain physical environment. Therefore, the haptic interface must

control the reaction forces at the output, rather than the device endpoint trajectory. This is ideally

achieved with control schemes based on force-feedback, but for simpler implementations it is also

possible to use open-loop force/torque control.

In order to produce transparent haptic rendering, a multi-purpose haptic device must be able to simulate

free movement, i.e. give the user the impression that they are moving their hand freely, without any

device attached to it. Once this so-called “transparency” is achieved, arbitrary forces can be superposed

on the free movement.

One of the most frequently implemented control strategy for haptic interfaces is impedance control. The

dynamic relationship between the input movement and the output force/torque is referred to as

“mechanical impedance”. As a simple example, consider a mechanical spring; you can compress or stretch

the spring (i.e. impose a movement on it), and as a result, you will get a force as a function of the amount

of deformation. Therefore, in impedance control mode, the haptic device will generate forces in reaction

to a displacement generated by the human operator.

Different objects have different mechanical properties that affect the kinesthetic feedback that we get

when touching them. These mechanical properties can be mathematically described in terms of their

mechanical impedance. The basic elements of mechanical impedance are elasticity (i.e. spring-like

behavior that relates force to displacement), viscosity (i.e. fluid-like behavior that relates force to speed),

and inertia (i.e. resistance to changes in speed that relates force to acceleration). Using a combination of

these 3 elements, various objects can be modelled. Thus, impedance control will allow simulating different

objects with the haptic interface.

The impedance control scheme theoretically requires force/torque sensors at the output to measure the

interaction forces with the operator in order to control them in closed-loop, but can practically be realized

without such sensors if the actuators and transmissions are backdrivable and have low friction, and the

mechanical structure has low inertia (For more information on impedance control, refer to (Hogan &

Buerger, 2005)).

Like almost all modern robotic devices, haptic interfaces are computer-controlled, which means that they

rely on discrete-time digital controllers. Haptic control loop must run at a minimum of 1 kHz, to be able

to compensate for vibrations up to the sensible frequency of 400 Hz. Also, keep in mind that we are trying

to simulate continuous-time behavior (i.e. the behavior of real physical objects) with a discrete-time

system; this is an approximation. The lower the frequency of the haptic control loop, the less accurate this

approximation becomes. The errors resulting from this and several other approximations can result in

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 7 of 19

unstable behavior of the haptic interface (for instance, unwanted vibrations with an increasing

amplitude). Stability issues are often the main challenge in simulating rigid environments (Desai et al.,

2019).

Another point that can be considered in the case of a haptic interface is the visual feedback. As the user

interacts with a virtual environment, visual information is usually presented together with the haptic

feedback (various applications additionally present acoustic feedback to enrich the user experience and

make it more realistic). The visual feedback must be presented at an update rate of at least 15 Hz for the

user to perceive “smooth” animation.

Figure 5: Schematic representation of the visual and haptic control loops of a virtual reality station.

Figure 5 schematically represents the visual and haptic feedback loops present in the Xitact IHP. The

interaction forces between the haptic interface and the virtual world are calculated and updated on the

haptic interface at about 1 kHz. This, together with the collision detection, requires an important amount

of processing power, which surpasses that of many industrial robots. The visual feedback is generated at

20 Hz. The computer screen shows the interaction of the virtual tool with the virtual environment

(Vollenweider, 2000) (Moix, 2005).

6. Bibliography
Desai, I., Gupta, A., & Chakraborty, D. (2019). Effect of Human Hand Dynamics on Haptic Rendering of Stiff

Springs using Virtual Mass Feedback. 2019 28th IEEE International Conference on Robot and Human

Interactive Communication (RO-MAN), 1–6. https://doi.org/10.1109/RO-MAN46459.2019.8956422

Gillespie, R. B. (2005). Haptic interface to virtual environments. In Robotics and Automation Handbook.

Tom Kurfess (ed.). CRC Press.

https://doi.org/10.1109/RO-MAN46459.2019.8956422

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 8 of 19

Hayward, V., & Maclean, K. (2007). Do it yourself haptics: part i. IEEE Robotics & Automation Magazine,

14(4):88–104.

Hogan, N., & Buerger, S. (2005). Impedance and Interaction Control. In Robotics and Automation

Handbook. Tom Kurfess (ed.). CRC Press.

Moix, T. (2005). Mechatronic Elements and Haptic Rendering for Computer Assisted Minimally Invasive

Surgery Training. Lausanne: EPFL PhD thesis No 3306.

Samur, E. (2010). Systematic Evaluation Methodology and Performance Metrics for Haptic Interfaces.

EPFL PhD Thesis No 4648.

Vollenweider, M. (2000). High Quality Virtual Reality Systems with Haptic Feedback. Lausanne: EPFL PhD

thesis No 2251.

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 9 of 19

7. Practical Session

7.1. Hardware overview
The final purpose in this practical session is to implement some simple virtual environments using the

haptic device shown in Figure 6. The main part of the device itself consists of 2 brushless DC (BLDC)

motors, connected directly (i.e. without any gearbox or transmission) to a pantograph linkage that

converts the rotational movement of the motors to the translational movement of the end point in the

2D plane. In robotics literature, the rotational movement space of the motors is typically referred to as

the “joint space”, and the translational movement space of the end point (also known as the end-effector)

is referred to as the “task space”.

Figure 6: The pantograph haptic device and its peripherals.

The motors are driven by a controller board, which is responsible for (i) doing the calculations to render

the virtual environment and (ii) driving to motors according to those calculations2. The board is powered

by a DC power supply. In order to enable the board to drive the motors, the winding phases of the motors

and the Hall sensor outputs are connected to the green screw terminal on the board. The (incremental)

2 In many robotic devices, these 2 tasks are typically carried out by 2 separate units: an embedded computer
(which only takes care of the calculations related to the virtual environment and the robot kinematics/dynamics, to
generate the force/torque commands), and a motor driver (which takes care of providing the required voltage and
current to the motors to follow the force/torque commands generated by the controller).

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 10 of 19

shaft encoders of the motors are also connected to the black “box connectors” on the board using flat

cables, providing a more accurate information about the position of the motor shafts. You can read more

about brushless DC motors and incremental encoders in Annex I. Note that in order to protect the motors,

the board will limit the torque of the motors to their rated (nominal) torque. Even if you command a

higher torque value, this limit on the torques will be enforced by the controller board. Try to find out the

nominal torque of the motors of the pantograph by looking up their part number on the internet and

finding their datasheet.

All of the computations on the board are carried out by a microcontroller. You will upload your program

(written in the C programming language) to render the virtual environment on this microcontroller, using

a programmer (ST-link V2). This programmer is only active for a few seconds when you upload (or “flash”)

your code to the board, and is idle the rest of the time3. After uploading your code to the microcontroller,

you can communicate with it from the computer to read the variables and also set controller parameters

if needed. This communication is done via the UART protocol, using the USB/UART converter that allows

the computer to transfer data with the device over a normal USB port.

Important precaution for working with the device:

The controller board is exposed, and this board is sensitive to electrostatic discharge. Therefore, avoid

touching the board as much as possible, and if you have to touch the board (for pushing the reset button

for example), touch the blue metal part of the pantograph first to discharge any possible static charge in

your body.

3 However, it is better to keep it connected to the computer because you may need to flash your code several
times. When the programmer is connected to the board, it should also be kept connected to the computer
because otherwise it will block the microcontroller from running.

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 11 of 19

7.2. Theoretical Derivations

Exercise 1. Deriving the kinematic equations

Figure 7: Simplified geometric representation of the Pantograph kinematic chain.

A) Derive, by hand, the forward kinematic equations for the endpoint of the pantograph, relating

the joint space positions to task space (i.e., endpoint position as a function of motor angles). In

other words, write the equation describing P(x,y) in the Cartesian plane in terms of angles 𝜑𝐴 and

𝜑𝐵 as shown in Figure 7 with the lengths a, b and c as fixed parameters. Pay attention to the

positive direction of the X and Y axes, the positive direction of the angles, and the zero point of

the angles. Keep your equations consistent with Figure 7. Also note that the origin of the

coordinate frame O is located on the midpoint of the line connecting motors A and B (so we have

𝑨(0, + 𝑐
2⁄) and 𝑩(0, − 𝑐

2⁄) for example).

Hint: You can use the auxiliary point PM (midpoint of the line connecting P1 and P2) and geometric

relationships to simplify the derivation. This is not the only possible method, though.

B) Implement these equations in a MATLAB script and roughly verify that the results make sense

using some intuitive values for the motor angles. You can use the numerical values 𝑎 =

102 [𝑚𝑚], 𝑏 = 111 [𝑚] and 𝑐 = 60 [𝑚𝑚] for the lengths to do the numerical verification.

C) After checking your equations, convert them to symbolic form4 such that you have the X and Y

components of the endpoint position P, as a function of symbolic variables named phi_A,

phi_B, LENGTH_A, LENGTH_B and LENGTH_C. You can then generate the equations to be

4 For this step you need to have the Symbolic Math Toolbox of MATLAB installed on your computer. For a very
short review of this toolbox and its most used commands, refer to this webpage.

http://www.cfm.brown.edu/people/dobrush/am33/Matlab/intro/symbolic.html

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 12 of 19

implemented on the microcontroller (expressed in C programming syntax rather than MATLAB)

using the ccode() function of MATLAB.

Exercise 2. Deriving the force/torque equations

A) Derive, by hand, the equations between 𝑭(𝐹𝑥, 𝐹𝑦), the force vector applied to the end point of

the device, and the motor torques 𝜏𝐴 and 𝜏𝐵 (i.e. the equations relating task-space forces to joint-

space torques). Write the motor torques as a function of the end point force components with

the motor angles as variables (that is, 𝜏𝐴 = 𝑓(𝐹𝑥 , 𝐹𝑦 , 𝜑𝐴, 𝜑𝐵) and 𝜏𝐵 = 𝑔(𝐹𝑥 , 𝐹𝑦 , 𝜑𝐴, 𝜑𝐵)). Use the

lengths a, b and c as fixed parameters. Pay attention to the positive direction of the force

components and the torques as shown in Figure 7 (positive direction of the torques is the same

as the positive direction for the angles).

Hint: Jacobian matrix provides the relation between joint velocities and end-effector velocities of

a manipulator. By using the derived kinematics in the Exercise 1., compute the jacobian matrix.

Later, by using 𝜏 = 𝐽𝑇𝐹 relation, map the cartesian forces to equivalent joint torques.

B) Implement the equations in your MATLAB script and similar to before, roughly verify them by

inputting some representative numerical values for the joint angles and force vector components.

C) After checking your equations, you can convert them to the symbolic form such that you have the

torques of the motors A and B as a function of symbolic variables named phi_A, phi_B,

LENGTH_A, LENGTH_B, LENGTH_C, F_x and F_y. You can then generate the equations

to be implemented on the microcontroller directly using the ccode() function of MATLAB.

7.3. Flashing the base code and pantograph initialization
As a first step to begin working with the device and becoming familiar with it, you can flash the base code

to the controller and check the reading of the encoder angles. Follow these steps for flashing the code:

1. Plug your power supply into the electric outlet and verify that your device is powered on by

checking the LED on the board.

2. Open the microcontroller code project in the System Workbench software, and compile the code

by clicking on the black downward arrow next to the “build” icon (see Figure 8) and making sure

Release is selected (you only need to do this once, next time you can just click on the build icon).

Figure 8 - Selecting "release" mode for the first-time compilation of the microcontroller code.

3. Connect the USB cable of the programmer to your computer. The red LED on the programmer will

turn on if it is properly connected. If this LED is off or blinking, it means there is a problem is your

connection to the computer, check with the assistants.

4. After the build process is finished successfully, you can flash the program to the microcontroller

by clicking on the black downward arrow next to the “run” icon, then Run As > 1 Ac6 STM32… (see

Figure 9). Verify that the flashing process is finished successfully by looking in the Console tab on

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 13 of 19

the bottom of the System Workbench window, there should be a line saying “Verified OK” near

the end.

Figure 9 - Flashing the code on the microcontroller for the first time.

Now you can use the GUI application on the computer to communicate with the board and read the

encoder angles. The encoders of the device are incremental, which means that they can only give the

relative amount of rotation of the motor compared to the initial position at which you power on the

device. But for our calculations, we need the absolute angles as defined before (refer to Figure 7).

Therefore, before being able to start working with the device, you need to initialize the encoders. Follow

these steps to communicate with the device via the GUI and initialize the encoders:

1. Make sure that the USB/UART module is connected to the computer’s USB port. Open the

PantographGUI project in Qt Creator and run it by clicking on the green “run” button on the

bottom left corner of the screen (see Figure 10).

Figure 10 - Running the GUI program in Qt Creator.

2. On the first window that appears, from the “Serial port” drop down menu, choose USB Serial Port

and then click on OK. The GUI window will appear (Figure 11).

3. If the numbers for the board input voltage and current are not being displayed, use the red reset

button next to the encoder connector of motor A on the controller board (see Figure 12).

Resetting the board is required each time you flash a new program to the microcontroller.

4. You can also monitor the messages sent from the microcontroller in the Application Output tab

in Qt Creator. After resetting the board, you can check the messages received from the controller

to verify the communication as well.

5. Try moving the links directly connected to each motor and see the angle value changing in the

GUI window. In order to initialize the angles to the correct absolute values, move the link directly

connected to each motor to the 90◦ angle (you can use the black cross marks on the base as a

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 14 of 19

guide) and then enter 90 in the “Motor A/B Angle” field and click on the Set button. Verify that

the angle for the corresponding motor has changed to 90. You need to do this separately for each

motor. Also, each time you power off, reset, or reprogram the board, this procedure needs to be

repeated.

Figure 11 - The GUI window of the PC interface software.

Figure 12 - Reset button on the controller board.

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 15 of 19

7.4. Becoming familiar with the microcontroller code
Go back to the microcontroller code in System Workbench. On the left side of the screen in the Project

Explorer pane, find the file motorboard_main.c in the src folder. This file is the part of the code you

will be writing your program in. Around the top of this file, find the lines where the constants and variables

for the pantograph are defined and initialized (indicated clearly by comments in the code). You will be

using these parameters and variables in your controller. Also pay attention to the units of these

parameters and variables, indicated in the comments. Then scroll down to the function

StepMainLoop()which is where you need to insert your controller code. This function will be called at

1 KHz (that is, every 1 millisecond). You can see some sections are marked with a comment saying “YOUR

CODE HERE”.

7.5. Implementing the haptic controller

Exercise 3. Implementing and testing the kinematics
Insert your code for calculating the X and Y coordinates of the endpoint position under the section marked

with the comment Forward kinematics. Use the motor angles phi_A and phi_B defined just

above, and the necessary parameters and variables defined on the top section of the file. Update the

values of the endPointXPosition and endPointYPosition variables with your calculated

values. You can use the C code generated by your MATLAB script from Exercise 1 here.

After entering your code and checking that it compiles without any errors, you can flash the program to

the controller board. Then, connect to the board with the GUI program and initialize the encoders to the

correct angles as described in the previous section. Now try moving the end point around and see the

values for the “Endpoint X/Y” being updated in the GUI.

In order to verify your kinematics, place the end point over each of the cross marks on the base. These

points are located at (+90, ±30)[𝑚𝑚] and your calculated end point position must approximately agree

with these values.

Exercise 4. Implementing and testing the force-torque conversion
Insert your code for calculating the torques of the two motors based on the force vector applied to the

end point under the section marked with the comment Generate torque commands from end

point force. Use the force components F_x and F_y in your expressions, and update the values of

the motorATorqueCommand and motorBTorqueCommand variables. You can use the C code

generated by your MATLAB script from Exercise 2 here. Compile and flash your code to the board, and

initialize the encoders.

A) As a first test, set F_x to 1 [N] and F_y to 0 [N] and check the “Motor A/B Torque Command”

values in the GUI as you move the endpoint around. Do these generated commands make sense?

Explain how you checked the behavior to verify intuitively that this is correct. Check your results

with the assistants before proceeding.

B) Click on the “Arm H-Bridges” button in the GUI to activate the H-bridges on the board and start

driving the motors. After a brief delay, the motors will start applying the commanded torques.

Feel the direction of the force being applied at the end point, does it correspond to the force you

programmed?

C) Gradually increase the value of F_x, while keeping an eye on the commanded torques to the

motors. What is approximately the upper limit on the force that the device can generate over

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 16 of 19

the full workspace? Which factors (in the design and component selection of the device)

determine this upper limit? Would you suggest using a gearbox to increase this force? Why or

why not?

Exercise 5. Rendering virtual springs in X and Y
As explained in Section 0, the mechanical properties of real objects that are relevant for kinesthetic

feedback can be described in terms of elasticity, viscosity, and inertia. To keep things simple, in this lab

we will focus on only simulating elasticity.

Write the code to simulate an elastic virtual environment at the end point of the pantograph, consisting

of two separate linear springs acting in the X and Y directions respectively. Use the variables named X_ref

and Y_ref as the resting position of the springs. Also, use the spring constants K_x and K_y in your

equations, and save the calculated forces to F_x and F_y. Compile and flash the code to the board. Do

not forget to initialize the encoders before continuing.

A) As a first test, set some sensible values for the spring stiffnesses and resting positions. Then,

without activating the motors, move the end point around and check the generated torque

commands. Do they intuitively make sense? Check your results with the assistants before going

to the next step.

B) Try simulating a spring only in one direction at a time (e.g. only x-axis or only y-axis), with a proper

stiffness value. Arm the H-bridges and test the behavior. Does it replicate the behavior of a real

spring?

C) Set the spring stiffness in one of the directions to a very low value, e.g. 0.001 [N/mm], and the

other to 0. Does this behavior correspond to that of an ideal spring? If not, please explain how

it is different and what is causing the difference.

D) Set both of your spring constants to 0.01 [N/mm], then gradually increase the stiffness only in one

direction, by increments of 0.01. Do you observe a fundamental change in the behavior of the

virtual spring for small deformations as you increase the stiffness (other than feeling stiffer)? Hint:

to investigate this, set the current position of the end-effector of the pantograph to be the

equilibrium point of the spring, and then gradually increase the stiffness.

E) Based on your observations in the previous part, what is the highest stiffness that you can set and

still have realistic behavior for small deformations? Which issue keeps you from increasing the

stiffness beyond this value? What could be causing this issue? (Hint: refer to the discussion about

instability in section 5 and the cited reference.)

F) Discuss your conclusions about the limitations of this device in rendering virtual springs.

According to your observations, which characteristics determine the lower limit, and which

ones influence the upper limit of the impedances (which was only a stiffness in this lab) that a

haptic device can render realistically?

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 17 of 19

ANNEX I

Actuators and Sensors

Brushless DC motors
Two brushless DC motors (BLDC) are used for our haptic interface. Before looking at the working principle

of a brushless motor, let’s see how the “brushed motors” are working.

The “brushed motors” derive their name from having brushes within the internal structure. In a brushed

motor a stator with magnets surrounds a turning rotor. When connected to a current source, opposite

polarities create a magnetic field torque. Because of this, the rotor starts turning around its axis. In other

words, the rotor turns under the influence of the magnetic field such that its north pole will move toward

the south pole of the stator (Figure 13, right). Brushes are used to switch the polarity of the rotor magnet

as the rotor rotates, so that the opposite poles on the rotor and stator are always close to each other (and

therefore creating torque). This constant switching of the polarity is called “commutation”. You can refer

to this video for a very easy to understand explanation.

The “brushless motor” is so named since the magnetic field is provided by rotating magnets while the

armature is stationary, thus eliminating the need for brush commutation. The flow of the electric current

between the rotor and the stationary part of the machine is switched externally. As the rotor keeps

turning, the commutator reverses the direction of the electric current (and thus the magnetic field) to

create a one-way torque to keep the motor turning.

Figure 13 – Working principles of brushless and brushed motors

The difference between a brushed motor and a brushless motor is thus in how the commutation is done.

In brushed motors, the commutation is done mechanically in the motor. In a brushless motor, the

commutation needs to be done by an external electrical circuit, and thus we need sensing. A Hall-effect

sensor which is a solid-state, magnetic field sensor is used to sense the rotation angle and thus control

the current supply to the stator such that the magnetic field is in the right direction. In other words, the

https://www.youtube.com/watch?v=CWulQ1ZSE3c

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 18 of 19

Hall-effect sensor can be used to measure the rotation speed, and the angle of the rotor, and then decide

when the current should be applied to the motor coils to make the magnets rotate at the right orientation.

The Hall-effect sensor employs the principle that when a conductor with current flowing through it is

placed in a magnetic field, the magnetic field induces a transverse force on the charge carriers. This force

pushes them to the sides of the conductor—negative to one side and positive to the other side. This

creates charge on the sides of the conductor induces a voltage.

Figure 14 – Structural components of BLDC motor

Compared to other types of motors (DC brushed, stepper motors…), these ones have many advantages

such as higher efficiency, high torque to weight ratio, compact size, increased reliability, low vibration and

reduced noise. Thanks to these advantages, BLDC motors are often used in modern devices where low

noise and low heat are required especially if devices run continuously. These primary distinctions are

relevant to haptic interface design.

Encoders
To accurately determine the motor’s shaft angle at any point in time, 2 position sensors are attached to

one end of each motor. For such position sensors, several technologies exist such as magnetic sensing

(using Hall Effect sensors) or optical encoders like the ones we are using.

Rehabilitation and Assistive Robotics Group (REHAssist) Haptic Interfaces Lab

Page 19 of 19

Figure 15. Optical encoder working principle

In an optical encoder, a focused beam of light is aimed at a paired photo detector and is interrupted by a
coded patterned disk. Thus, the system will produce a number of pulses per revolution, linearly with the
motor’s shaft angle. Two types of optical encoders exist: absolute and differential encoders. For the first
type, the absolute angle of the shaft is known by just reading the light pattern while differential
encoders only allow incremental / decremental readings.

Figure 16: Different types of optical encoders

To know in which direction the shaft will turn, optical systems actually use two LEDs (2 channels) slightly

misaligned in order to generate different signals depending on the rotation:

To properly convert the photo detectors output to a pure square signal such as--+ the one shown in the

above diagram, differential line receivers can be used, where Schmitt triggers are incorporated.

